Biologic Responders And Super-responders in the International Severe Asthma Registry

Eve Denton^{1,2}, Mark Hew^{1,2}, Ruth Murray³, Lakmini Bulathsinhala^{3,49}, Trung N. Tran⁴, Neil Martin^{4,5}, Mona Al-Ahmad⁶, Alan Altraja⁷, Carlos Andrés Celis-Preciado⁸, Riyad Al-Lehebi⁹, Celine Bergeron¹⁰, Mohit Bhutani¹¹, Sinthia Bosnic-Anticevich¹², Arnaud Bourdin¹³, Guy Brusselle¹⁴, John Busby¹⁵, Giorgio Walter Canonica¹⁶, Jérémy Charriot¹³, Kenneth R. Chapman¹⁷, Carlos Andrés Celis-Preciado⁸, Riyad Al-Lehebi⁹, Celine Bergeron¹⁰, Mohit Bhutani¹¹, Sinthia Bosnic-Anticevich¹², Arnaud Bourdin¹³, Guy Brusselle¹⁴, John Busby¹⁵, Giorgio Walter Canonica¹⁶, Jérémy Charriot¹³, Kenneth R. Chapman¹⁷, Carlos Andrés Celis-Preciado⁸, Riyad Al-Lehebi⁹, Celine Bergeron¹⁰, Mohit Bhutani¹¹, Sinthia Bosnic-Anticevich¹², Arnaud Bourdin¹³, Guy Brusselle¹⁴, John Busby¹⁵, Giorgio Walter Canonica¹⁶, Jérémy Charriot¹³, Kenneth R. Chapman¹⁷, Carlos Andrés Celis-Preciado⁸, Riyad Al-Lehebi⁹, Celine Bergeron¹⁰, Mohit Bhutani¹¹, Sinthia Bosnic-Anticevich¹², Arnaud Bourdin¹³, Guy Brusselle¹⁴, John Busby¹⁵, Giorgio Walter Canonica¹⁶, Jérémy Charriot¹³, Kenneth R. Chapman¹⁷, Carlos Andrés Celis-Preciado⁸, Riyad Al-Lehebi⁹, Celine Bergeron¹⁰, Mohit Bhutani¹¹, Sinthia Bosnic-Anticevich¹², Arnaud Bourdin¹³, Guy Brusselle¹⁴, John Busby¹⁵, Giorgio Walter Canonica¹⁶, Jérémy Charriot¹³, Kenneth R. Chapman¹⁷, Carlos Anticevich¹³, Subhava¹⁷, Carlos Anticevich¹³, Subhava¹⁷, Carlos Anticevich¹⁴, John Busby¹⁵, Giorgio Walter Canonica¹⁶, Jérémy Charriot¹³, Kenneth R. Chapman¹⁷, Carlos Anticevich¹⁴, John Busby¹⁵, Giorgio Walter Canonica¹⁶, Jérémy Charriot¹³, Kenneth R. Chapma¹⁷, Carlos Anticevich¹⁴, John Busby¹⁵, Giorgio Walter Canonica¹⁶, Jérémy Charriot¹⁴, John Busby¹⁵, Giorgio Walter Canonica¹⁶, Jérémy Charris, Chapma¹⁷, Jérémy Charris, Chapma¹⁷, Jérémy Charris, Char George C. Christoff¹⁸, Li Ping Chung¹⁹, Borja G. Cosio²⁰, Richard W. Costello²¹, Breda Cushen²², João A. Fonseca²³, Peter G. Gibson²⁴, Liam G. Heaney²⁵, Takashi Iwanaga²⁶, Mariko Siyue Koh²⁷, Lauri Lehtimäki²⁸, Jorge Máspero²⁹, Bassam Mahboub³⁰, Patrick Mitchell³¹, Nikolaos Papadopoulos³², Luis Perez-De-Llano³³, Diahn-Warng Perng³⁴, Matthew Peters³⁵, Paul E. Pfeffer³⁶, Todor A. Popov³⁷, Celeste M. Porsbjerg³⁸, Chin Kook Rhee³⁹, Nicolas Roche⁴⁰, Mohsen Sadatsafavi⁴¹, Sundeep Salvi⁴², Chau-Chyun Sheu⁴³, Carlos A. Torres-Duque⁴⁴, Charlotte S. Ulrik⁴⁵, John Upham⁴⁶, Eileen Wang⁴⁷, Michael E. Wechsler⁴⁸, David B. Price^{49,50}, on behalf of the LUMINANT Working Group. ¹Alleray. Asthma & Clinical Immunology. Alfred Health. Melbourne. Australia. ³Optimum Patient Care. Cambridge. United Kingdom. ⁴BioPharmaceuticals Medicine, Kuwait University, Al-Rashed Allergy Center, Ministry of Health, Kuwait, ⁷Department of Pulmonology, University of Tartu and Lung Clinic, Tartu University, Al-Rashed Allergy Center, Ministry of Health, Kuwait, ⁷Department of Pulmonology, University of Tartu and Lung Clinic, Tartu University, Al-Rashed Allergy Center, Ministry of Health, Kuwait, ⁷Department of Pulmonology, University of Leicester, Leicester, United Kingdom, ⁶Microbiology Department, College of Medicine, Kuwait, ⁷Department of Pulmonology, University of Leicester, United Kingdom, ⁶Microbiology Department, College of Medicine, Kuwait, ⁷Department of Pulmonology, University of Leicester, United Kingdom, ⁶Microbiology Department, College of Medicine, Kuwait, ⁷Department of Pulmonology, University of Tartu and Lung Clinic, Tartu University, Al-Rashed Allergy Center, Ministry of Health, Kuwait, ⁷Department of Pulmonology, University of Tartu and Lung Clinic, Tartu, Estonia, ⁸Pulmonary Unit, Hospital lanacio. Boaota. Colombia. ⁹Department of Pulmonology. Kina Fahad Medical City, Toronto, Canada, ¹⁰Vancouver, Canada, ¹⁰Vancouver, Canada, ¹⁰Vancouver, Canada, ¹⁰Vancouver, Canada, ¹¹Division of Pulmonary Medicine, Onte Plant, The University of Sydney, Australia, ¹³PhyMedExp, Univ Montpellier, CNRS, INSERM, CHU Montpellier, France, ¹⁴Department of Respiratory Medicine, Ghent, University of Sydney, Australia, ¹³PhyMedExp, Univ Montpellier, CNRS, INSERM, CHU Montpellier, CNRS, INSERM, CHU Montpellier, France, ¹⁴Department of Respiratory Medicine, Ghent, The University of Sydney, Australia, ¹⁰Vancouver, Canada, ¹⁰Vancouver, Canada, ¹⁰Vancouver, Canada, ¹¹Division of Pulmonary Medicine, Ghent, The University of Sydney, Australia, ¹³PhyMedExp, Univ Montpellier, CNRS, INSERM, CHU Montpellier, CNRS, INS or Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Sofia, Bulgaria, ¹⁹Fiona Stanley Hospital, Perth, Australia, ²⁰Son Espases University, Sofia, Bulgaria, ¹⁹Fiona Stanley Hospital, Perth, Australia, ²⁰Department of Respiratory Medicine, RCSI, Dublin, Ireland, ²²Department of Respiratory Medicine, Beaumont Hospital, Perth, Australia, ²⁰Son Espases University, Sofia, Bulgaria, ¹⁹Fiona Stanley Hospital, ¹⁰Personalized Medicine, RCSI, Dublin, Ireland, ²²Department of Respiratory Medicine, Beaumont Hospital, Perth, Australia, ²⁰Son Espases University, Sofia, Bulgaria, ¹⁹Fiona Stanley Hospital, Perth, Australia, ²⁰Son Espases University, Sofia, Bulgaria, ¹⁹Fiona Stanley Hospital, Perth, Australia, ²⁰Son Espases University, Sofia, Bulgaria, ¹⁹Fiona Stanley Hospital, Perth, Australia, ²⁰Son Espases University, Sofia, Bulgaria, ¹⁹Fiona Stanley Hospital, Perth, Australia, ²⁰Son Espases University, Sofia, Bulgaria, ¹⁹Fiona Stanley Hospital, ¹⁰Fiona Stanley Hospital, Perth, Australia, ²⁰Son Espases University, Sofia, Bulgaria, ¹⁰Fiona Stanley Hospital, ¹⁰Fio ²⁵Wellcome-Wolfson Institute for Experimental Medicine, University of Newcastle, Newcastle, Newcastle, Newcastle, Newcastle, Singapore, ²⁸Allergy Centre, Tampere University Hospital, ²⁵Wellcome-Wolfson Institute for Experimental Medicine, University Hospital, ²⁴Australian, ²⁶Kindai University Hospital, ²⁶Kindai University Hospital, ²⁷Department of Respiratory and Critical Care Medicine, Singapore, ²⁸Allergy Centre, Tampere University Hospital, ²⁷Wellcome-Wolfson Institute for Experimental Medicine, University of Newcastle, Australian, ²⁷Wellcome-Wolfson Institute for Experimental Medicine, Singapore, ²⁸Allergy Centre, Tampere University Hospital, ²⁴Australian, ²⁷Wellcome-Wolfson Institute for Experimental Medicine, Singapore, ²⁸Allergy Centre, Tampere University Hospital, ²⁷Wellcome-Wolfson Institute for Experimental Medicine, University Hospital, ²⁷Wellcome-Wolfson Institute for Experimental Medicine, ²⁷Wellcome-Wolfson Institute for Experimental Medicine, ²⁶Wellcome-Wolfson Institute for Experimental Medicine, ²⁷Wellcome-Wolfson Institute for Experimental Medicine, ²⁶Wellcome-Wolfson Institute for Experimental Medicine, ²⁷Wellcome-Wolfson Institute for Experimental Medicine, ²⁶Wellcome-Wolfson Institute for Experimental Medicine, ²⁷Wellcome-Wolfson Institute for Experimental Medicine, ²⁶Wellcome-Wolfson Institute for Experimental Medicine, ²⁷Wellcome-Wolfson Institute for Experimental Medicine, ²⁶Wellcome-Wolfson Institute for Experimental Medicine, ²⁷Wellcome-Wolfson Institute for Experimental Medici 32 Division of Infection, Immunity & Respiratory Medicine, ClDEA Foundation, Buenos Aires, Argentina, ³⁰ Rashid hospital, EOXI Lugo, Monforte, Cervo, Spain, ³⁴ School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ³⁵ Department to spital, EOXI Lugo, Monforte, Cervo, Spain, ³⁴ School of Medicine, United Kingdom, ³³ Pneumology Service, Lucus Augusti University, Taipei, Taiwan, ³⁵ Department to spital, Buenos Aires, and Respiratory Medicine, ClDEA Foundation, Buenos Aires, Argentina, ³⁰ Rashid hospital, EOXI Lugo, Monforte, Cervo, Spain, ³⁴ School of Medicine, University of Manchester, United Kingdom, ³³ Pneumology Service, Lucus Augusti University, Taipei, Taiwan, ³⁵ Department ³⁹Division of Pulmonary and Critical Care Medicine, Seoul St. Mary's Hospital, Sydney, Australia, ³⁸Department of Respiratory Medicine, APHP-Centre University of Korea, ⁴⁰Department of Respiratory Medicine, APHP-Centre University Paris Cité, Sofia, Bulgaria, ³⁸Department of Respiratory Medicine, APHP-Centre University Paris Cité, Sofia, Bulgaria, ³⁹Division of Pulmonary and Critical Care Medicine, Seoul St. Mary's Hospital, College of Medicine, Seoul St. Mary's Hospital, College of Medicine, Seoul St. Nary's Hospital, Sofia, Bulgaria, ³⁹Division of Pulmonary and Critical Care Medicine, Seoul St. Mary's Hospital, College of Medicine, Seoul St. Mary's Hospital, Sofia, Bulgaria, ³⁹Division of Pulmonary and Critical Care Medicine, Seoul St. Mary's Hospital, Sofia, Bulgaria, ³⁹Division of Pulmonary and Critical Care Medicine, Seoul St. Mary's Hospital, College of Medicine, Seoul St. Mary's Hospital, Sofia, Bulgaria, ³⁹Division of Pulmonary and Critical Care Medicine, Seoul St. Mary's Hospital, College of Medicine, Seoul St. Mary's Hospital, Sofia, Bulgaria, ³⁹Division of Pulmonary and Critical Care Medicine, Seoul St. Mary's Hospital, Sofia, Bulgaria, ³⁹Division of Pulmonary and Critical Care Medicine, Seoul St. Mary's Hospital, Sofia, Bulgaria, ³⁹Division of Pulmonary and Critical Care Medicine, Seoul St. Mary's Hospital, Sofia, Bulgaria, ³⁹Division of Pulmonary and Critical Care Medicine, Seoul St. Mary's Hospital, Sofia, Bulgaria, ³⁹Division of Pulmonary and Critical Care Medicine, Seoul St. Mary's Hospital, Sofia, Bulgaria, ³⁹Division of Pulmonary and Critical Care Medicine, Seoul St. Mary's Hospital, Sofia, Bulgaria, ³⁹Division of Pulmonary and Critical Care Medicine, Seoul St. Mary's Hospital, ³⁰Division of Pulmonary and Critical Care Medicine, Seoul St. Mary's Hospital, ³⁰Division of Pulmonary and Critical Care Medicine, Seoul St. Mary's Hospital, ³⁰Division of Pulmonary and Critical Care Medicine, ³⁰Division of Pulmonary and Critical Care Medicine, ³⁰Division of Pulm 4⁴ Evention of Pulmonary and Critical Care Medicine, Bogota, Colombiana, Bogota, Colombiana, Bogota, Colombiana, Ventorical Care Medicine, Copenhagen University Hospital, Hvidovre, Denmark, ⁴⁶ Diamantina Institute & PA-Southside Clinical Unit, The University of British Columbia, ⁴⁵ Department of Respiratory Medicine, Copenhagen University Hospital, Hvidovre, Denmark, ⁴⁶ Diamantina Institute & PA-Southside Clinical Unit, The University of British Columbia, ⁴⁴ Fundacion, Pune, India, ⁴³ Division of Pulmonary and Critical Care Medicine, Copenhagen University of British Columbia, ⁴⁴ Fundacion, Pune, India, ⁴⁴ Fundacion, Pune, Pun Queensland, Brisbane, Australia, ⁴⁷Division of Allergy and Clinical Immunology, Department of Medicine, National Jewish Health, Denver, CO, United States, ⁴⁸NJCohen Family Asthma Institute, Department of Medicine, National Jewish Health, Denver, CO, United States, ⁴⁸NJCohen Family Asthma Institute, Department of Medicine, National Jewish Health, Denver, CO, United States, ⁴⁹Observational Jewish Health, Denver, CO,

Introduction

Randomised, controlled trials confirm the efficacy of severe asthma biologics in a selected sample of patients, but real-world effectiveness data help further guide clinical practice in the broader population

Aims

- The LUMINANT study describes an international, realworld population who initiate biologic medications and to explore response and super-response across four individual asthma outcomes
- Patients not initiating biologics were also examined for comparison

Methods

- Patients with severe asthma enrolled in the International Severe Asthma Registry (ISAR) with ≥ 24 weeks of follow-up data were included
- Patient that initiated biologics were compared to those that did not
- Response was examined as per Table 1

Table 1. Single domain definition of response and super-response in patients with severe asthma between baseline and month 12 visit

Domain	Definition of responders	Definition of super- responders	Excluded from analysis
Asthma exacerbations	≥ 50% reduction in annualised exacerbation rate	Exacerbation elimination	Zero annualised exacerbations at baseline
FEV ₁	≥ 100 mL improvement in post bronchodilator FEV ₁	≥ 500 mL improvement in post bronchodilator FEV ₁	Not applicable
Asthma control	Improved asthma control by category (controlled, partial, poor)	New attainment of well-controlled asthma	Well-controlled asthma at baseline
Long-term oral corticosteroid (LTOCS) burden	Reduction in LTOCS (mg)	Cessation of LTOCS or weaning to adrenal insufficiency dose ≥ 5 mg	Not on LTOCS at baseline

Results

- biomarkers were similar between groups (Table 2)

Table 2: Baseline characteristics of the total LUMINANT cohort, those who were initiated on biologics and those who were not

Initiated on biologics and those who were i			
	Biologic n = 2116	Non-biologic n = 6330	P-value
DEMOGRAPHICS			
Sex (female), % (n/N)	62% (1311 / 2116)	62% (3893 / 6330)	0.71
White race, % (n/N)	78% (1471 / 1876)	79% (4380 / 5573)	
Age (years), mean ± SD (n)	53 ± 15 (2115)	58 ± 17 (6335)	<0.001
BMI, mean ± SD (n)	29.1 ± 7 (1862)	29.6 ± 8 (4995)	0.03
Smoking status never smoker, % (n/N)	62% (1309 / 2116)	45% (2858 / 6335)	<0.001
Asthma onset, mean ± SD (n)	29 ± 19 (1449)	31 ± 20 (2126)	<0.001
ASTHMA STATUS			
Baseline FEV_1 pre-bronchodilator, mean \pm SD (n)	1.9 ± 0.8 (1516)	2.1 ± 0.8 (3678)	<0.001
FEV ₁ reversibility, % (n)	16% (178)	12% (346)	<0.001
Poor asthma control, % (n/N)	75% (973 / 1299)	56% (1277 / 2268)	<0.001
Baseline annualised exacerbations, mean ± SD (n)	3.8 ± 4 (1711)	1.6 ± 2 (2688)	<0.001
Baseline annualised exacerbations (categorical), %			
0	11%	30%	
1–3	48%	58%	<0.001
4–5	20%	7%	<0.001
≥6	21%	5%	
LTOCS, % (n/N)	43% (901 / 2116)	14% (878 / 6335)	<0.001
Anti-IgE, % (n)	38% (809)	N/A	
Anti–IL-5/5R, % (n)	59% (1242)	N/A	
Anti–IL-4/13, % (n)	3% (63)	N/A	
BIOMARKERS			0.7
Blood eosinophil count, mean ± SD (n)	598 ± 893 (504)	617 ± 820 (954)	0.7
FeNO (ppb), mean ± SD (n)	$49 \pm 46 (800)$	47 ± 46 (1532)	0.3
IgE, mean ± SD (n)	443 ± 1003 (1273)	417 ± 1306 (2441)	0.5
Sensitised to perennial allergens, % (n/N)	39% (671 / 1724)	44% (1844 / 4177)	0.001

- those not initiating biologics (**Figure 1**, **Table 3**)
- versus 28%, p<0.001)
- exacerbations and LTOCS (Figure 2)

Acknowledgements

Writing, editorial support, and/or formatting assistance in the development of this poster was provided by Andrea Lim, BSc (Hons), and Joash Tan, BSc (Hons), of the Observational and Pragmatic Research Institute, Singapore, and was funded by AstraZeneca

Disclosures

This study was conducted by the Observational and Pragmatic Research Institute (OPRI) Pte Ltd and was partially funded by Optimum Patient Care Global and AstraZeneca Ltd. No funding was received by OPRI for its contribution. Presenter's conflict of interest disclosure: Lakmini Bulathsinhala is an employee of OPRI. OPRI conducted this study in collaboration with Optimum Patient Care and AstraZeneca.

 2116 participants initiated biologics (5.3% met criteria for clinical trials) and 6335 did not Biologic initiators had worse baseline asthma status than non-initiators, although

Response was more frequently achieved among participants initiating biologics versus

• FEV₁ (54% versus 34%, p<0.001), asthma control (49% versus 42%, p=0.007), exacerbation reduction (59% versus 44%, p<0.001), and LTOCS reduction (49%)

Super-response was more frequent in each domain among biologic initiators

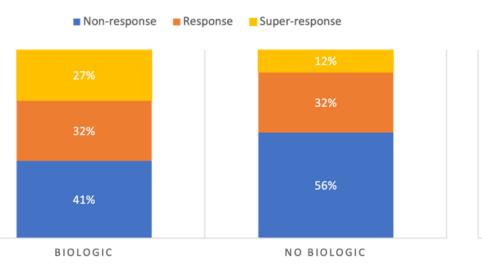

Compared to participants initiating an anti-IgE agent, participants initiating anti-IL-5 agents had worse baseline impairment but experienced greater improvement in

Figure 2. Domains of response (unadjusted) according to biologic class at Figure 1. Proportion of responders (orange), super-responders (yellow) and nonresponders (blue) across single domains in those initiated on biologics, with baseline and follow-up of \geq 24 weeks \geq 24 weeks follow up, and those who were not initiated on biologics

72%

NO BIOLOGIC

ANNUALISED EXACERBATIONS

ASTHMA CONTROL

Non-response Response Super-response

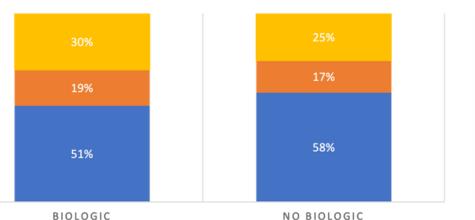
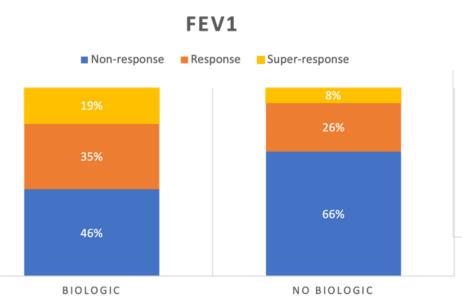
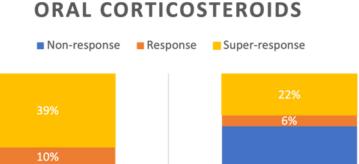
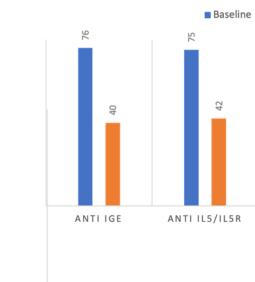


Table 3. Proportion of patients that met the criteria of a single domain of response among those who did and did not initiate a biologic medication between the baseline and follow-up visit

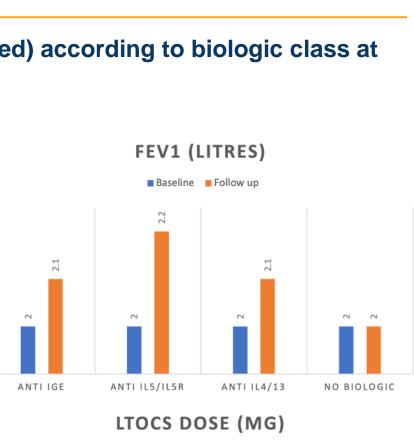

R	RESPONSE, % (n/N)
E	xacerbation reduced ≥ 50%
F	EV ₁ improved ≥ 100 mL
A	Asthma control improved
L	TOCS dose reduced
S	SUPER-RESPONSE, % (n/N)
E	Exacerbation elimination
F	EV ₁ improved ≥ 500 mL
	low good oothmo oontrol

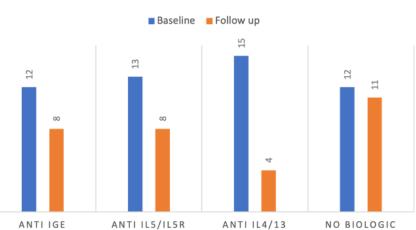

New good asthma control


LTOCS super-response

Abbreviations

BMI, body mass index; FeNO, fractional exhaled nitric oxide; FEV1, forced expiratory volume in one second; IgE, immunoglobulin E; IL-4/13, interleukin-4/13; IL-5, interleukin-5; IL-5R, interleukin-5 receptor; ISAR, International Severe Asthma Registry; LTOCS, long-term oral corticosteroids; ppb, parts per billion; SD, standard deviation





ANNUALISED EXACERBATIONS

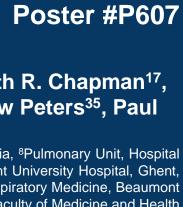
Baseline Follow u

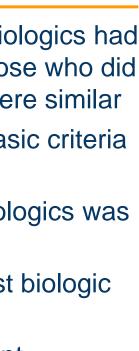
POOR ASTHMA CONTROL (%)

BIOLOGIC

51%

Biologic	Non-biologic	p-value
59% (806 / 1375)	44% (359 / 814)	<0.001
54% (358 / 665)	34% (354 / 1048)	<0.001
49% (524 / 1072)	42% (299 / 706)	0.007
49% (255 / 517)	28% (32 / 112)	<0.001
27% (442 / 1620)	12% (242 / 1967)	<0.001
19% (124 / 665)	8% (86 / 1048)	<0.001
30% (318 1072)	25% (196 / 706)	0.016
39% (200 / 517)	22% (25 / 112)	<0.001


Conclusions


- Patients with severe asthma who initiated biologics had greater disease severity at baseline than those who did not initiate biologics, but biomarker levels were similar
- Only 5.3% of study participants met even basic criteria for clinical trials
- Clinical response and super-response to biologics was observed in all four domains
- Super-response was more frequent amongst biologic initiators than non-initiators
- In the context of differing baseline impairment, response to biologics may differ by biologic class

